Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function

نویسندگان

  • Violeta Rayon-Estrada
  • Dewi Harjanto
  • Claire E Hamilton
  • Yamina A Berchiche
  • Emily Conn Gantman
  • Thomas P Sakmar
  • Karen Bulloch
  • Khatuna Gagnidze
  • Sheila Harroch
  • Bruce S McEwen
  • F Nina Papavasiliou
چکیده

Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3'UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-cytometric visualization of C>U mRNA editing reveals the dynamics of the process in live cells

APOBEC1 is the catalytic subunit of the complex that edits ApolipoproteinB (ApoB) mRNA, which specifically deaminates cytidine 6666 to uracil in the human transcript. The editing leads to the generation of a stop codon, resulting in the synthesis of a truncated form of ApoB. We have developed a method to quantitatively assay ApoB RNA editing in live cells by using a double fluorescent mCherry-E...

متن کامل

Induction of Body Weight Loss through RNAi-Knockdown of APOBEC1 Gene Expression in Transgenic Rabbits

In the search of new strategies to fight against obesity, we targeted a gene pathway involved in energy uptake. We have thus investigated the APOB mRNA editing protein (APOBEC1) gene pathway that is involved in fat absorption in the intestine. The APOB gene encodes two proteins, APOB100 and APOB48, via the editing of a single nucleotide in the APOB mRNA by the APOBEC1 enzyme. The APOB48 protein...

متن کامل

Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications

Advances in next-generation sequencing and mass spectrometry have revealed widespread messenger RNA modifications and RNA editing, with dramatic effects on mammalian transcriptomes. Factors introducing, deleting, or interpreting specific modifications have been identified, and analogous with epigenetic terminology, have been designated "writers," "erasers," and "readers." Such modifications in ...

متن کامل

C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47.

Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is accomplished by the deaminase APOBEC1 and its partnership with the RNA-binding protein A1CF. We identify and characterise here a novel RNA-binding protein, RBM47, that interacts with APOBEC1 and A1CF and is expressed in tissues where C to U RNA editing occurs. RBM47 can substitute for A1CF and is necessary an...

متن کامل

Editing of the MALAT1 Gene in MDA-MB-361 Breast Cancer Cell Line using the Novel CRISPR Method

Introduction: Long non-coding RNAs play an important role in regulating gene expression, RNA processing, histone modification, and rearrangement of chromatin genes. These molecules can also be involved in many biological processes, such as organogenesis, cell differentiation, development, genome imprinting, quantitative compensation, and tumorigenesis. High expression of MALAT1 (a type of lncRN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2017